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Coupled quantum dots as quantum gates
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We consider a quantum-gate mechanism based on electron spins in coupled semiconductor quantum dots.
Such gates provide a general source of spin entanglement and can be used for quantum computers. We
determine the exchange couplingJ in the effective Heisenberg model as a function of magnetic (B) and
electric fields, and of the interdot distancea within the Heitler-London approximation of molecular physics.
This result is refined by usingsp hybridization, and by the Hund-Mulliken molecular-orbit approach, which
leads to an extended Hubbard description for the two-dot system that shows a remarkable dependence onB and
a due to the long-range Coulomb interaction. We find that the exchangeJ changes sign at a finite field~leading
to a pronounced jump in the magnetization! and then decays exponentially. The magnetization and the spin
susceptibilities of the coupled dots are calculated. We show that the dephasing due to nuclear spins in GaAs
can be strongly suppressed by dynamical nuclear-spin polarization and/or by magnetic fields.
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I. INTRODUCTION

Semiconductor quantum dots, sometimes referred to
artificial atoms, are small devices in which charge carri
are confined in all three dimensions.1 The confinement is
usually achieved by electrical gating and/or etching te
niques applied, e.g., to a two-dimensional electron
~2DEG!. Since the dimensions of quantum dots are on
order of the Fermi wavelength, their electronic spectr
consists of discrete energy levels that have been studie
great detail in conductance1,2 and spectroscopy
measurements.1,3,4 In GaAs heterostructures the number
electrons in the dots can be changed one-by-one sta
from zero.5 Typical laboratory magnetic fields (B'1 T) cor-
respond to magnetic lengths on the order ofl B'10 nm, be-
ing much larger than the Bohr radius of real atoms but of
same size as artificial atoms. As a consequence, the dot s
trum depends strongly on the applied magnetic field.1–3 In
coupled quantum dots, which can be considered to some
tent as artificial molecules, Coulomb blockade effects6 and
magnetization7 have been observed, as well as the format
of a delocalized ‘‘molecular state.’’8

Motivated by the rapid down scaling of integrated c
cuits, there has been continued interest in classical logic
vices made of electrostatically coupled quantum dots.9 More
recently, the discovery of new principles of computati
based on quantum mechanics10 has led to the idea of usin
coupled quantum dots for quantum computation;11 many
other proposed implementations have been explored, inv
ing NMR,12–14 trapped ions,15 cavity QED,16 and Josephson
junctions.17 Solid-state devices open up the possibility
fabricating large integrated networks that would be requi
for realistic applications of quantum computers. A basic f
ture of the quantum-dot scenario11 is to consider theelectron
spin S as the qubit~the qubit being the basic unit of infor
mation in the quantum computer!. This stands in contrast to
PRB 590163-1829/99/59~3!/2070~9!/$15.00
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alternative proposals also based on quantum dots,18–21 in
which it is the charge ~orbital! degrees of freedom out o
which a qubit is formed and represented in terms of
pseudospin-1/2. However, there are two immediate adv
tages of real spin over pseudospin: First, the qubit rep
sented by a real spin-1/2 is always a well-defined qubit;
two-dimensional Hilbert space is the entire space availa
thus there are no extra dimensions into which the qubit s
could ‘‘leak.’’ 22 Second, during a quantum computatio
phase coherence of the qubits must be preserved. It is thu
essential advantage of real spins that their dephasing time
GaAs can be on the order of microseconds,23 whereas for
charge degrees of freedom dephasing times are typic
much less, on the order of nanoseconds.24,25

In addition to a well-defined qubit, we also need a co
trollable ‘‘source of entanglement,’’ i.e., a mechanism
which two specified qubits at a time can be entangled26 so as
to produce the fundamental quantumXOR @or controlled-
NOT# gate operation, represented by a unitary opera
UXOR.27 This can be achieved by temporarily coupling tw
spins.11 As we will show in detail below, due to the Coulom
interaction and the Pauli exclusion principle the ground st
of two coupled electrons is a spin singlet, i.e., a highly e
tangled spin state. This physical picture translates into
exchange couplingJ(t) between the two spinsS1 and S2
described by a Heisenberg Hamiltonian

Hs~ t !5J~ t !S1•S2 . ~1!

If the exchange coupling is pulsed such that*dt J(t)/\
5J0ts /\5p (mod 2p), the associated unitary time evolu
tion U(t)5T exp@i*0

t Hs(t)dt/\# corresponds to the
‘‘swap’’ operatorUsw, which simply exchanges the quantu
states of qubit 1 and 2.11 Furthermore, the quantumXOR can
be obtained11 by applying the sequence exp@i(p/
2070 ©1999 The American Physical Society
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PRB 59 2071COUPLED QUANTUM DOTS AS QUANTUM GATES
2)S1
z#exp@2i(p/2)S2

z#Usw
1/2 exp(ipS1

z)Usw
1/2[UXOR, i.e., a

combination of ‘‘square-root of swap’’Usw
1/2 and single-qubit

rotations exp(ipS1
z), etc. SinceUXOR ~combined with single-

qubit rotations! is proven to be a universal quantum gate,18,26

it can, therefore, be used to assemble any quantum a
rithm. Thus, the study of a quantumXOR gate is essentially
reduced to the study of theexchange mechanismand how the
exchange couplingJ(t) can be controlled experimentally
We wish to emphasize that the switchable coupling mec
nism described in the following need not be confined
quantum dots: the same principle can be applied to o
systems, e.g., coupled atoms in a Bravais lattice, overlap
shallow donors in semiconductors such as P in Si,28 and so
on. The main reason to concentrate here on quantum do
that these systems are at the center of many ongoing ex
mental investigations in mesoscopic physics, and thus th
seems to be reasonable hope that these systems can be
into quantum gates functioning along the lines propo
here.

In view of this motivation we study in the following th
spin dynamics of two laterally coupled quantum dots co
taining a single electron each. We show that the excha
couplingJ(B,E,a) can be controlled by a magnetic fieldB
~leading to wave-function compression!, or by an electric
field E ~leading to level detuning!, or by varying the barrier
height or equivalently the interdot distance 2a ~leading to a
suppression of tunneling between the dots!. The dependence
on these parameters is of direct practical interest, sinc
opens the door to tailoring the exchangeJ(t) for the specific
purpose of creating quantum gates. We further calculate
static and dynamical magnetization responses in the pres
of perpendicular and parallel magnetic fields, and show
they give experimentally accessible information about
exchangeJ. Our analysis is based on an adaptation
Heitler-London and Hund-Mulliken variational techniques29

to parabolically confined coupled quantum dots. In parti
lar, we present an extension of the Hubbard approxima
induced by the long-range Coulomb interaction. We find
striking dependence of the Hubbard parameters on the m
netic field and interdot distance, which is of relevance a
for atomic-scale Hubbard physics in the presence of lo
range Coulomb interactions. Finally, we discuss the effe
of dephasing induced by nuclear spins in GaAs and sh
that dephasing can be strongly reduced by dynamically
larizing the nuclear spins and/or by magnetic fields.

The paper is organized as follows. In Sec. II we introdu
the model for the quantum gate in terms of coupled dots
Sec. III we calculate the exchange coupling first in t
Heitler-London and then in the Hund-Mulliken approac
There we also discuss the Hubbard limit and the new feat
arising from the long-range nature of the Coulomb inter
tions. In Sec. IV we consider the effects of imperfectio
leading to dephasing and gate errors; in particular, we c
sider dephasing resulting from nuclear spins in GaAs. Im
cations for experiments on magnetization and spin susce
bilities are presented in Sec. V, and Sec. VI contains so
concluding remarks on the networks of gates with some s
gestions for single-qubit gates operated by local magn
fields. Finally, we mention that a preliminary account
some of the results presented here has been given in Re
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II. MODEL FOR THE QUANTUM GATE

We consider a system of two laterally coupled quant
dots containing one~conduction band! electron each~see
Fig. 1!. It is essential that the electrons are allowed to tun
between the dots, and that the total wave function of
coupled system must be antisymmetric. It is this fact t
introduces correlations between the spins via the charge~or-
bital! degrees of freedom. For definiteness we shall use in
following the parameter values recently determined
single GaAs heterostructure quantum dots5 that are formed in
a 2DEG; this choice is not crucial for the following analys
but it allows us to illustrate our analytical results with rea
istic numbers. The Hamiltonian for the coupled system
then given by

H5 (
i 51,2

hi1C1HZ5Horb1HZ ,

hi5
1

2m S pi2
e

c
A~r i ! D 2

1exiE1V~r i !, ~2!

C5
e2

kur12r2u
.

The single-particle Hamiltonianhi describes the electron dy
namics confined to thexy-plane. The electrons have an e
fective massm (m50.067me in GaAs! and carry a spin-1/2
Si . The dielectric constant in GaAs isk513.1. We allow for
a magnetic fieldB5(0,0,B) applied along thez axis, which
couples to the electron charge via the vector potentialA(r )
5(B/2)(2y,x,0). We also allow for an electric fieldE ap-
plied in plane along thex direction, i.e., along the line con
necting the centers of the dots. The coupling of the d
~which includes tunneling! is modeled by a quartic potentia

V~x,y!5
mv0

2

2 F 1

4a2 ~x22a2!21y2G , ~3!

which separates~for x around6a! into two harmonic wells
of frequencyv0 , one for each dot, in the limit of large in

FIG. 1. Two coupled quantum dots with one valence elect
per dot. Each electron is confined to thexy plane. The spins of the
electrons in dots 1 and 2 are denoted byS1 andS2 . The magnetic
field B is perpendicular to the plane, i.e., along thez axis, and the
electric fieldE is in plane and along thex axis. The quartic poten-
tial is given in Eq.~3! and is used to model the coupling of tw
harmonic wells centered at (6a,0,0). The exchange couplingJ
between the spins is a function ofB, E, and the interdot distance
2a.
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terdot distance, i.e., for 2a@2aB , wherea is half the dis-
tance between the centers of the dots, andaB5A\/mv0 is
the effective Bohr radius of a single isolated harmonic w
This choice for the potential is motivated by the experime
tal fact5 that the spectrum of single dots in GaAs is w
described by a parabolic confinement potential, e.g., w
\v053 meV.5 We note that increasing~decreasing! the in-
terdot distance is physically equivalent to raising~lowering!
the interdot barrier, which can be achieved experiment
by, e.g., applying a gate voltage between the dots.6 Thus, the
effect of such gate voltages is described in our model sim
by a change of the interdot distance 2a. We also note that it
is only for simplicity that we choose the two dots to b
exactly identical, and no qualitative changes will occur in t
following analysis if the dots are only approximately equ
and approximately of parabolic shape.

The~bare! Coulomb interaction between the two electro
is described byC. The screening lengthl in almost depleted
regions like few-electron quantum dots can be expected t
much larger than the bulk 2DEG screening length~which is
about 40 nm in GaAs!. Therefore,l is large compared to the
size of the coupled system,l@2a'40 nm for small dots,
and we will consider the limit of unscreened Coulomb int
action (l/a@1) throughout this paper.

The magnetic fieldB also couples to the electron spins v
the Zeeman termHZ5gmB( iBi•Si , whereg is the effective
g factor (g'20.44 for GaAs!, andmB the Bohr magneton
The ratio between the Zeeman splitting and the relevant
bital energies is small for allB values of interest here; in
deed, gmBB/\v0&0.03, for B!B05(\v0 /mB)(m/me)
'3.5 T, and gmBB/\vL&0.03, for B@B0 , where vL
5eB/2mc is the Larmor frequency, and where we us
\v053 meV. Thus, we can safely ignore the Zeeman sp
ting when we discuss the orbital degrees of freedom
include it later into the effective spin Hamiltonian. Also,
the few-electron system we are dealing with, spin-orbit
fects can be completely neglected sinceHso/\v0'1027,
whereHso5(v0

2/2mc2)L•S is the spin-orbit coupling of an
electron in a parabolic confinement potential.30 This has the
important implication that dephasing effects induced, e.g.
potential or charge fluctuations in the surroundings of
isolated dots can couple only to the charge of the electro
that they have very small influence on the phase cohere
of the isolated spin itself~for dephasing induced by couplin
the dots see Sec. IV!. It is for this reason that it is preferabl
to consider dots containing electrons instead of holes, s
holes will typically have a sizable spin-orbit interaction.1

Finally, we assume a low-temperature description wh
kT!\v0 , so that we can restrict ourselves to the two low
orbital eigenstates ofHorb, one of which is symmetric~spin
singlet! and the other one antisymmetric~spin triplet!. In this
reduced~four-dimensional! Hilbert space,Horb can be re-
placed by the effective Heisenberg spin Hamiltonian~1!,
Hs5JS1•S2 , where the exchange energyJ5e t2es is the
difference between the triplet and singlet energy that
wish to calculate. The above model cannot be solved in
analytically closed form. However, the analogy between
oms and quantum dots~artificial atoms! provides us with a
powerful set of variational methods from molecular phys
for finding e t and es. Note that the typical energy sca
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\v0'meV in our quantum dot is about a thousand tim
smaller than the energies (Ry'eV) in a hydrogen atom,
whereas the quantum dot is larger by about the same fa
This is important because their size makes quantum d
much more susceptible to magnetic fields than atoms
analogy to atomic physics, we call the size of the elect
orbitals in a quantum dot the Bohr radius, although it
determined by the confining potential rather than by the C
lomb attraction to a positively charged nucleus. For h
monic confinementaB5A\/mv0 is about 20 nm for\v0
53 meV.

III. EXCHANGE ENERGY

A. Heitler-London approach

We consider first the Heitler-London approximation, a
then refine this approach by including hybridization as w
as double occupancy in a Hund-Mulliken approach, wh
will finally lead us to an extension of the Hubbard descr
tion. We will see, however, that the qualitative features oJ
as a function of the control parameters are already captu
by the simplest Heitler-London approximation for the arti
cial hydrogen molecule described by Eq.~2!. In this approxi-
mation, one starts from single-dot ground-state orbital wa
functionsw~r ! and combines them into the~anti!symmetric
two-particle orbital state vector

uC6&5
u12&6u21&

A2~16S2!
, ~4!

the positive~negative! sign corresponding to the spin singl
~triplet! state, andS5*d2rw1a* (r )w2a(r )5^2u1& denoting
the overlap of the right and left orbitals. A nonvanishin
overlap implies that the electrons tunnel between the d
~see also Sec. III B!. Here, w2a(r )5^r u1& and w1a(r )
5^r u2& denote the one-particle orbitals centered atr
5(7a,0), and u i j &5u i &u j & are two-particle product states
The exchange energy is then obtained throughJ5e t2es
5^C2uHorbuC2&2^C1uHorbuC1&. The single-dot orbitals
for harmonic confinement in two dimensions in a perpe
dicular magnetic field are the Fock-Darwin states,31 which
are the usual harmonic oscillator states, magnetically co
pressed by a factorb5v/v05A11vL

2/v0
2, where vL

5eB/2mc denotes the Larmor frequency. The ground st
~energy\v5b\v0! centered at the origin is

w~x,y!5Amv

p\
e2mv~x21y2!/2\. ~5!

Shifting the single particle orbitals to (6a,0) in the presence
of a magnetic field we obtainw6a(x,y)5exp(6iya/
2l B

2)w(x7a,y). The phase factor involving the magnet
length l B5A\c/eB is due to the gauge transformationA6a
5B(2y,x7a,0)/2→A5B(2y,x,0)/2. The matrix ele-
ments ofHorb needed to calculateJ are found by adding and
subtracting the harmonic potential centered atx52(1)a
for electron 1~2! in Horb, which then takes the formHorb

5h2a
0 (r1)1h1a

0 (r2)1W1C, where h6a
0 (r i)5@pi

2eA(r i)/c#2/2m1mv0
2@(xi7a)21yi

2#/2 is the Fock-
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Darwin Hamiltonian shifted to (6a,0), and W(x1x2)
5( i 51,2V(xi ,yi)2mv0

2@(x11a)21(x22a)21y1
21y2

2#/2.
We obtain

J5
2S2

12S4 S ^12uC1Wu12&2
Rê 12uC1Wu21&

S2 D , ~6!

where the overlap becomes S5exp(2mva2/\
2a2\/4l B

4mv). Evaluation of the matrix elements ofC and
W yields ~see also Ref. 30!

J5
\v0

sinh@2d2~2b21/b!# FcAb$e2bd2
I0~bd2!

2ed2~b21/b!I0@d2~b21/b!#%1
3

4b
~11bd2!G , ~7!

where we introduce the dimensionless distanced5a/aB ,
and I0 is the zeroth-order Bessel function. The first and s
ond terms in Eq.~7! are due to the Coulomb interactionC,
where the exchange term enters with a minus sign. The
rameterc5Ap/2(e2/kaB)/\v0 ('2.4, for\v053 meV! is
the ratio between Coulomb and confining energy. The
term comes from the confinement potentialW. The result
J(B) is plotted in Fig. 2~dashed line!. Note that typically
uJ/\v0u&0.2. Also, we see thatJ.0 for B50, which must
be the case for a two-particle system that is time-reve
invariant.29 The most remarkable feature ofJ(B), however,
is the change of sign from positive to negative atB5B

*
s ,

which occurs over a wide range of parametersc anda. This
singlet-triplet crossing occurs at aboutB

*
s 51.3 T for \v0

53 meV (c52.42) andd50.7. The transition from antifer
romagnetic (J.0) to ferromagnetic (J,0) spin-spin cou-
pling with increasing magnetic field is caused by the lon

FIG. 2. Exchange energyJ in units of meV plotted against the
magnetic fieldB ~in units of Tesla!, as obtained from thes-wave
Heitler-London approximation~dashed line!, Eq. ~7!, and the result
from the improvedsp-hybridized Heitler-London approximation
~triangles!, which is obtained numerically as explained in the te
Note that the qualitative behavior of the two curves is similar, i
they both have zeroes, thes-wave approximation atB

*
s , and the

sp-hybridized approximation atB
*
sp, and also both curves vanis

exponentially for large fields.B05(\v0 /mB)(m/me) denotes the
crossover field to magnetically dominated confining (B@B0). The
curves are given for a confinement energy\v053 meV ~implying
for the Coulomb parameterc52.42!, and interdot distancea
50.7aB .
-

a-

st

al

-

range Coulomb interaction, in particular by the negat
exchange term, the second term in Eq.~7!. As B@B0
~'3.5 T for \v053 meV!, the magnetic field compresse
the orbits by a factorb'B/B0@1 and thereby reduces th
overlap of the wave functions,S25exp@22d2(2b21/b)#, ex-
ponentially strongly. Similarly, the overlap decays expone
tially for large interdot distancesd@1. Note however, that
this exponential suppression is partly compensated by
exponentially growing exchange term^12uCu21&/S2

}exp@2d2(b21/b)#. As a result, the exchange couplingJ de-
cays exponentially as exp(22d2b) for largeb or d, as shown
in Fig. 3~b! for B50 (b51). Thus, the exchange couplingJ
can be tuned through zero and then suppressed to zero
magnetic field in a very efficient way. We note that o
Heitler-London approximation breaks down explicitly~i.e.,J
becomes negative even whenB50! for certain interdot dis-
tances whenc exceeds 2.8. Finally, a similar singlet-triple
crossing as a function of the magnetic field has been foun
singledots with two electrons.32

The exchange energyJ also depends on the applied ele
tric field E. The additional terme(x11x2)E in the potential
merely shifts the one-particle orbitals byDx5eE/mv0

2, rais-
ing the energy of both the singlet and triplet states. Since
singlet energy turns out to be less affected by this shift th
the triplet, the exchange energyJ increases with increasing
E,

.

.,

FIG. 3. The exchange couplingJ obtained from Hund-Mulliken
~full line!, Eq. ~11!, and from the extended Hubbard approximati
~dashed line!, Eq. ~12!. For comparison, we also plot the usu
Hubbard approximation where the long-range interaction termV is
omitted, i.e.,J54tH

2 /UH ~dashed-dotted line!. In ~a!, J is plotted as
a function of the magnetic fieldB at the fixed interdot distance (d
5a/aB50.7), and forc52.42, in ~b! as a function of the interdo
distanced5a/aB at zero field (B50), and againc52.42. For
these parameter values, thes wave Heitler-LondonJ, Eq. ~7!, and
the Hund-MullikenJ ~full line! are almost identical.
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J~B,E!5J~B,0!1
\v0

sinh@2d2~2b21/b!#

3

2

1

d2 S eEa

\v0
D 2

,

~8!

the increase being proportional tomv0
2(Dx)2. „We note that

this increase ofJ(B,E) is qualitatively consistent with wha
one finds from a standard two-level approximation of a
double-well potential@with J(B,0) being the effective tunne
splitting# in the presence of a bias given byeEa.… The varia-
tional ansatz leading to Eq.~8! is expected to remain accu
rate as long asJ(B,E)2J(B,0)&J(B,0); for largerE fields
the levels of the dots get completely detuned and the ove
of the wave functions~i.e., the coherent tunneling! between
the dots is suppressed. Of course, a sufficiently large ele
field will eventually force both electrons on to the same d
which is the case wheneEa exceeds the on-site repulsio
U@@J(B,E50), see below#. However, this situation, which
would correspond to a quantum-dot helium,33 is not of inter-
est in the present context. Conversely, in case of dots
different size~or shape! where the energy levels need not
aligneda priori, an appropriate electric field can be used
match the levels of the two dots, thus allowing coherent t
neling even in those systems. Recent conducta
measurements8 on coupled dots of different size~containing
several electrons! with electrostatic tuning have reveale
clear evidence for a delocalized molecular state.

A shortcoming of the simple approximation describ
above is that solely ground-state single-particle orbitals w
taken into account and mixing with excited one-partic
states due to interaction is neglected. This approximatio
self-consistent if J!De, where De denotes the single
particle level separation between the ground state and
first excited state. We finduJ/Deu,0.25 at low fieldsB
<1.75 T, therefore,J(B) is at least qualitatively correct in
this regime. At higher fieldsuJ/Deu'1, indicating substan-
tial mixing with higher orbitals. An improved Heitler
London variational ansatz is obtained by introduci
sp-hybridized single-dot orbitals~in analogy to molecular
physics!, i.e., f5ws1awpx1 ibwpy , wherews5w is the s
orbital introduced above,wpq5A(2/p)mvq exp(2mvr2/
2\)/\, q5x,y, are the lowest two Fock-Darwin excite
states~at zero field! with angular momentumul u51, anda
and b are real variational parameters to be determined
minimization of the singlet and triplet energieses,t(a,b),
which is done numerically. Thewpq are chosen to be rea
they are, however, not eigenstates of the single-part
Hamiltonian, which arewpx6 iwpy ~with eigenenergy 2\v
6\vL!. Note that whilees,t decrease only by'1% due to
hybridization, the relative variation ofJ5e t2es can still be
substantial. Nevertheless, the resulting exchange energJsp

~Fig. 2! is only quantitatively different from the pures-wave
resultJ[Js, Eq.~7!. At low fields,Jsp,Js and the change o
sign occurs already at aboutB

*
sp.0.4 T,B

*
s . At high fields,

Jsp shows a much more pronounced decay as a functio
B.

Being a completely orbital effect, the exchange inter
tion between spins of course competes with the Zeeman
pling HZ of the spins to the magnetic field. In our cas
however, the Zeeman energyHZ is small and exceeds th
p
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exchange energy~polarizing the spins! only in a narrow win-
dow ~about 0.1 T wide! aroundB

*
sp and again for high fields

(B.4 T).

B. Hund-Mulliken approach and Hubbard limit

We turn now to the Hund-Mulliken method of molecula
orbits,29 which extends the Heitler-London approach by i
cluding also the two doubly occupied states, which both
spin singlets. This extends the orbital Hilbert space from t
to four dimensions. First, the single-particle states have to
orthonormalized, leading to the statesF6a5(w6a

2gw7a)/A122Sg1g2, whereS again denotes the overla
of w2a with w1a and g5(12A12S2)/S. Then, diagonal-
ization of

Horb52e1S U X 2&tH 0

X U 2&tH 0

2&tH 2&tH V1 0

0 0 0 V2

D , ~9!

in the space spanned byC6a
d (r1 ,r2)5F6a(r1)F6a(r2),

C6
s (r1 ,r2)5@F1a(r1)F2a(r2)6F2a(r1)F1a(r2)#/&

yields the eigenvalueses652e1UH/21V16AUH
2 /414tH

2 ,
es052e1UH22X1V1 ~singlet!, ande t52e1V2 ~triplet!,
where the quantities

e5^F6auh6a
0 uF6a&,

tH5t2w5^F6auh6
0 uF7a&2^C1

s uCuC6a
d &/&,

V5V22V15^C2
s uCuC2

s &2^C1
s uCuC1

s &,

X5^C6a
d uCuC7a

d &,

UH5U2V11X5^C6a
d uCuC6a

d &2^C1
s uCuC1

s &

1^C6a
d uCuC7a

d &, ~10!

all depend on the magnetic fieldB. The exchange energy i
the gap between the lowest singlet and the triplet state

J5e t2es25V2
UH

2
1

1

2
AUH

2 116tH
2 . ~11!

In the standard Hubbard approach for short-range Coulo
interactions~and without theB field!29 J reduces to2U/2
1AU2116t2/2, where t denotes the hopping-matrix ele
ment, andU the on-site repulsion@cf. Eq.~10!#. Thus,tH and
UH are the extended hopping-matrix element and the on-
repulsion, respectively, renormalized by long-range C
lomb interactions. The remaining two singlet energieses1

andes0 are separated frome t andes2 by a gap of orderUH
and are, therefore, neglected for the study of low-ene
properties. The evaluation of the matrix elements is straig
forward but lengthy, and we give the results in the Append
Typically, the ‘‘Hubbard ratio’’tH /UH is less than 1, e.g., if
d50.7, \v053 meV, andB50, we obtaintH /UH50.34,
and it decreases with increasingB. Therefore, we are in an
extended Hubbard limit, whereJ takes the form
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J5
4tH

2

UH
1V. ~12!

The first term has the form of the standard Hubba
approximation35 ~invoked previously11! but with tH and UH
being renormalized by long-range Coulomb interactions. T
second termV is new and accounts for the difference
Coulomb energy between the singly occupied singlet
triplet statesC6

s . It is precisely thisV that makesJ negative
for high magnetic fields, whereastH

2 /UH.0 for all values of
B @see Fig. 3~a!#. Thus, the usual Hubbard approximatio
~i.e., withoutV! would not give reliable results, neither fo
the B dependence@Fig. 3~a!# nor for the dependence on th
interdot distancea @Fig. 3~b!#.36 Since only the singlet spac
has been enlarged, it is clear that we obtain a lower sin
energyes than that from thes-wave Heitler-London calcula
tion, but the same triplet energye t , and, therefore,J5e t
2es exceeds thes-wave Heitler-London result@Eq. ~7!#.
However, the on-site Coulomb repulsionU}c strongly sup-
presses the doubly occupied statesC6a

d and already for the
value of c52.4 ~corresponding to\v053 meV! we obtain
almost perfect agreement with thes-wave Heitler-London
result ~Fig. 2!. For large fields, i.e.,B@B0 , the suppression
becomes even stronger (U}AB) because the electron orbi
become compressed with increasingB and two electrons on
the same dot are confined to a smaller area leading to
increased Coulomb energy.

IV. DEPHASING AND QUANTUM-GATE ERRORS

We allow now for imperfections and discuss first t
dephasing resulting from coupling to the environment, a
then address briefly the issue of errors during the quant
gate operation. We have already pointed out that depha
in the charge sector will have little effect on the~uncoupled!
spins due to the smallness of the spin-orbit interaction. Si
larly, the dipolar interaction between the qubit spin and
surrounding spins is also minute, and it can be estimate
(gmB)2/aB

3'1029 meV. Although both couplings are ex
tremely small, they will eventually lead to dephasing for s
ficiently long times. We have described such weak-coupl
dephasing in terms of a reduced master equation elsewhe11

and we refer the interested reader to this work. Since
type of dephasing is small it can be eliminated by error c
rection schemes.37

Next, we consider the dephasing due to nuclear spin
GaAs semiconductors, where both Ga and As posse
nuclear spinI 53/2. There is a sizable hyperfine couplin
between the electron-spin (s51/2) and all the nuclear spin
in the quantum dot, which might easily lead to a flip of t
electron spin and thus cause an error in the quantum com
tation. We shall now estimate this effect and show that it c
be substantially reduced by spin polarization or by a fie
We consider an electron spinS in contact withN nuclear
spins I ( i ) in the presence of a magnetic fieldBiz. The cor-
responding Hamiltonian is given byH5AS•I1bzSz1b̃zI z
5H01V, where

H05ASzI z1bzSz1b̃zI z , V5A~S1I 21S2I 1!/2.
~13!
d
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Here, A is a hyperfine coupling,I5( i 51
N I ( i ) is the total

nuclear spin, andbz5gmBBz , b̃z5gNmNBz (gN andmN de-
note the nuclearg factor and magneton!. Consider the initial
eigenstateu i & of H0 , which we will consider to be one basi
vector for the qubit, where the electron spin is up~in the Sz

basis!, and the nuclear spins are in a product state ofI z
( i )

eigenstates with totalI z5pNI (21<p<1), i.e., in a state
with polarizationp along thez axis; here,p561 means that
the nuclear spins are fully polarized in the positive~negative!
z direction, andp50 means no polarization. Due to the h
perfine coupling the electron spin can flip~i.e., dephase! with
the entire system going into a final stateuk&, which is again
a product state but now with the electron-spin down, a
due to conservation of total spin, thez componentI z

(k) of one
and only one nuclear spin having increased by 2s51. All
final statesuk& are degenerate and again eigenstates ofH0
with eigenenergyEf . We will consider this process now
within the time-dependent perturbation theory and up to s
ond order inV. The energy difference between initial an
final states amounts toEi2Ef'2s@A(pIN1s)1bz#, where
we have used thatbz@b̃z . For the reversed process with a
electron-spin flip from down to up but with the same initi
polarization for the nuclear spins the energy difference
'22s@A(pIN2s)1bz#. The total transition probability to
leave the initial stateu i & after timet has elapsed is then

Pi~ t !5S 2 sin@~Ef2Ei !t/2\#

Ef2Ei
D 2

(
k~Þ i !

z^kuVu i & z2. ~14!

We interpret this total transition probabilityPi(t) as the de-
gree of decoherence caused by spin-flip processes over
t. Now, z^kuVu i & z25A2@ I (I 11)2I z

(k)(I z
(k)11)#/4. Assuming

some distribution of the nuclear spins we can replace
matrix element by its average value~denoted by brackets!
where A^(I z

(k))2& describes then the variance of the me
value ^I z

(k)&5pI. For example, a Poissonian distributio
gives z^kuVu i & z2'A2@ I (I 11)2pI(pI11)#/4, in which case
the matrix element vanishes for full polarization parallel
the electron spin~i.e., p51!, as required by conservation o
total spin. Pi(t) is strongly suppressed for final states f
which t0[2p\/uEi2Ef u!t, which simply reflects conser
vation of energy. In particular, for a substantial nuclear p
larization, i.e.,p2N@1, Pi(t) oscillates in time but with the
vanishingly small amplitude 1/p2N ~for B50!. We can esti-
mateN to be on the order of the number of atoms per qu
tum dot, which is about 105. Such a situation withp2N@1
can be established by dynamically spin polarizing t
nuclear spins~Overhauser effect!, e.g., via optical pumping38

or via spin-polarized currents at the edge of a 2DEG.39 This
gives rise to an effective nuclear fieldBn5ApNI/gmB ,
which is reported to be as large asBn* 54 T in GaAs~corre-
sponding top50.85!,39 and which has a lifetime on the orde
of minutes.38 Alternatively, for unpolarized nuclei withp
50 but a fieldB in the Tesla range, the amplitude ofPi(t)
vanishes as (AIN/gmBB)2/N'(Bn* /B)2/N!1. For B or Bn

51 T the oscillation frequency 1/t0 of Pi(t) is about 10
GHz. Thus, spin-flip processes and hence, dephasing du
nuclear spins can be strongly suppressed, either by dyn
cally polarizing the nuclear spins and/or by applying a ma
netic field B. The remaining dephasing effects~described
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again by a weak-coupling master equation11! should then be
small enough to be eliminated by error correction.

We now address the imperfections of the quantum-g
operation. For this we note first that, for the purpose of qu
tum computing, the qubits must be coupled only for the sh
time of switchingts , while most of the time there is to be n
coupling between the dots. We estimate now how small
can choosets . For this we consider a scenario whereJ
~initially zero! is adiabatically switched on and off again du
ing the timets , e.g., by an electrical gate by which we low
and then raise again the barrierV(t) between the dots~alter-
natively, we can varyB, a, or E!. A typical frequency scale
during switching is given by the exchange energy~which
results in the coherent tunneling between the dots! averaged
over the time interval of switchingJ̄5(1/ts)*0

tsdtJ(t).
Adiabaticity then requires that many coherent oscillatio
~characterized approximately byJ̄! have to take place in the
double-well system while the control parameterv5V, B, a,
or E is being changed, i.e., 1/ts'uv̇/vu! J̄/\. If this crite-
rion is met, we can use our equilibrium analysis to calcul
J(v) and then simply replaceJ(v) by J„v(t)… in case of a
time-dependent control parameterv(t).41 Note that this is
compatible with the requirement needed for theXOR opera-
tion Jts /\5np, n odd, if we choosen@1. Our method of
calculatingJ is self-consistent ifJ!De, whereDe denotes
the single-particle level spacing. The combination of bo
inequalities yields 1/ts! J̄/\!De/\, i.e., no higher-lying
levels can be excited during the switching. Finally, sin
typically J'0.2 meV we see thatts should not be smalle
than about 50 ps. Now, during the timets spin and charge
couple and thus, dephasing in the charge sector describe
tf

c can induce dephasing of spin via an uncontrolled fluct
tion dJ of the exchange coupling. However, this effect
again small, and it can be estimated to be on the orde
ts /tf

c ;1022, since even for large dotstf
c is reported to be

on the order of nanoseconds.24 This seems to be a rathe
conservative estimate and one can expect the spin deph
to be considerably smaller since not every charge-depha
event will affect the spin. Finally, weak dephasing of t
effective spin Hamiltonian during switching has been d
scribed elsewhere11 in terms of a weak-coupling maste
equation, which accounts explicitly for decoherence of
spins during the switching process. Based on this analys11

the probability for a gate error per gate operation@described
by K2 in Eq. ~13! of Ref. 11# is estimated to be approxi
matelyts /tf

c ;1022 or better~see above!.

V. EXPERIMENTAL IMPLICATIONS

Coherent coupling between the states of neighboring d
is the keystone of our proposal for the quantum-gate op
tion, and experimental probes of this coupling will be ve
interesting to explore. The effect of the dot-dot coupli
manifests itself in the level structure, which could be me
sured noninvasively with spectroscopic methods.3,4 An alter-
native way is to measure the static magnetization in respo
to a magnetic fieldB, which is applied along thez axis. This
equilibrium magnetization is given byM5gmB Tr(S1

z

1S2
z)e2(Hs1HZ)/kT, where Hs is given in Eq.~1!, and HZ

5gmB( iBi•Si is the Zeeman term. It is straightforward
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evaluateM , and in Fig. 4 we plotM as a function ofB for a
typical temperatureT50.2 K. The exchangeJsp(B) is also
shown in Fig. 4. BothJsp(B) and M are the results of the
sp-hybridized Heitler-London approximation. We note th
the equilibrium magnetizationM (B) is strongly dominated
by the orbital response~via the exchangeJ!; we find a dia-
magnetic response~negative slope ofM ! for B,B

*
sp, which

is followed by a pronounced jump in the magnetization at
field B

*
sp followed again by a diamagnetic response. Expe

mental observation of this jump would give evidence for t
existence of the predicted singlet-triplet level-crossing
B

*
sp, and such measurements would allow one to ‘‘map ou

J around the point where it can be tuned to zero, e.g., by a
varying the barrier between the dots. The magnetic mom
produced by the orbital motion of the electrons in one pair
coupled quantum dots at the peak (B5B

*
sp) is around 10mB

~see Fig. 4!. This signal could be further amplified by usin
an ensemble of pairs of coupled quantum dots.

A further way to get experimental information about th
exchange coupling would be to measure the spin respons
an ac magnetic field~in the linear-response regime!, de-
scribed by the dynamical spin susceptibilitiesxmn

pq (v)
5( i /\)*0

`dt exp(ivt)^@Sm
p (t),Sn

q(0)#&, where m,n51,2, and
p,q5x,y,z. Being interested in the spin response on
we assume this ac field to be applied in plane so that th
is no orbital response~for a sufficiently weak field with
no subband mixing!. We see then that all the transver
spin susceptibilitiesxmn

pÞq,q vanish, and we are left with
the longitudinal ones only, wherexmn

xx 5xmn
yy 5xmn

zz [xmn

due to the rotational symmetry ofHs. It is sufficient to con-
sider the dissipative partxmn9 (v)5Im xmn(v) for which we
obtain x119 5x229 52x129 52x219 52(p/4) f (J,B)@d(\v1J)
2d(\v2J)#, where f (J,B)5(eJ/kT21)/@11eJ/kT

12 cosh(gmBB/kT)#. Also, due to conservation of total spin
the total responsex1 j1x2 j as well as the response to a sp
tially uniform field x i11x i2 vanish. Thus, to observe th
spin susceptibilities calculated here one needs to apply
fields locally or to measure the spin of a dot separately; b

FIG. 4. The equilibrium magnetizationM ~box-shaped symbols!
in units of Bohr magnetonsmB as a function of magnetic field.M is
obtained numerically from thesp-hybridized Heitler-London ap-
proximation. Note that the magnetization exhibits a jump at
field value B

*
sp for which the exchangeJsp ~triangle symbols!

changes sign. At the left- and right-hand side of the jump the ne
tive slope ofM (B) indicates orbital diamagnetism. The temperatu
for this plot is T50.2 K, while as before\v053 meV anda
50.7aB .
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cases could be realized, e.g., by atomic- or magnetic-fo
microscopes~see also below, where we briefly discuss loc
fields produced by field gradients!.

VI. CONCLUDING REMARKS

We end with a few comments on a network of coupl
quantum dots in the presence of fields~see also Ref. 11!. In
a setup with only one quantum gate~i.e., two quantum dots!
the gate operation can be performed using uniform magn
fields ~besides electric gates!, while in a quantum compute
with many gates, which have to be controlled individual
local magnetic fields are indispensable, especially for
single-qubit gates.11,42 However, we emphasize that it is no
necessary that every single quantum dot in a network is
rectly addressable with a local magnetic field. Indeed, us
‘‘swap’’ operationsUsw, any qubit state can be transporte
to a region where the single-qubit gate operation is p
formed, and then back to its original location, without d
turbing this or other qubits. In one possible mode of ope
tion a constant fieldB* , defined byJ(B* )50, is applied,
while smaller time-dependentlocal fields then control the
gate operations. We can envision local fields being achie
by a large number of techniques: with neighboring magn
dots,11 closure domains, a grid of current-carrying wires b
low the dots, tips of magnetic- or atomic-force microscop
or by bringing the qubit into contact~by shifting the dot via
electrical gating! with a region containing magnetic momen
or nuclear spins with different hyperfine coupling~e.g.,
AlGaAs instead of GaAs!, and others. A related possibilit
would be to use magnetic field gradients. Single-qu
switching times of the order ofts'20 ps require a field of 1
T, and for an interdot distance 2a'30 nm, we would need
gradients of about 1 T/30 nm, which could be produced w
commercial disk reading/writing heads.~The operation of
severalXOR gates via magnetic fields also requires gradie
of similar magnitude.! Alternatively, one could use an a
magnetic fieldBac and apply electron-spin resonance~ESR!
techniques to rotate spins with a single-qubit switching ti
~at resonance! ts'p\/Bac. To address the dots of an arra
individually with ESR, a magnetic field gradient is neede
which can be estimated as follows. Assuming a relative E
linewidth of 1% and again 2a530 nm we find aboutBac
3104 cm21. Field gradients in excitation sequences f
NMR up to 23104 G/cm have been generated,40 which al-
lows for Bac'1 G. The resulting switching times, howeve
are rather long, on the order of 100 ns, and larger field g
dients would be desirable. Finally, such ESR techniq
could be employed to obtain information about the effect
exchange valuesJ: the exchange coupling between the sp
leads to a shift in the spin-resonance frequency, which
found to be of the order ofJ/\ by numerical analysis.34

To conclude, we have calculated the exchange ene
J(B,E,a) between spins of coupled quantum dots~contain-
ing one electron each! as a function of magnetic and electr
fields and interdot distance using the Heitler-London, hybr
ized Heitler-London, and Hund-Mulliken variational ap
proach. We have shown thatJ(B,E,a) changes sign~reflect-
ing a singlet-triplet crossing! with increasingB field before it
vanishes exponentially. Besides being of fundamental in
est, this dependence opens up the possibility to use cou
e
l
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quantum dots as quantum gate devices, which can be o
ated by magnetic fields and/or electric gates~between the
dots! to produce entanglement of qubits.
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APPENDIX: HUND-MULLIKEN MATRIX ELEMENTS

Here, we list the explicit expressions for the matrix e
ments defined in Eqs.~9! and ~10! as a function of the di-
mensionless interdot distanced5a/aB and the magnetic
compression factorb5A11vL

2/v0
2 where vL5eB/2mc.

The single-particle matrix elements are given by

e5
3

32

1

b2d2 1
3

8

S2

12S2 S 1

b
1d2D1b, ~A1!

t5
3

8

S

12S2 S 1

b
1d2D , ~A2!

where we usedS5exp@2d2(2b21/b)#. The ~two-particle!
Coulomb matrix elements can be expressed as

V15N4@4g2~11S2!F11~11g2!2F214g2F3216g2F4#,
~A3!

V25N4~12g2!2~F22S2F3!, ~A4!

U5N4@~11g412g2S2!F112g2F212g2S2F328g2F4#,
~A5!

X5N4$@~11g4!S212g2#F112g2F212g2S2F328g2F4%,
~A6!

w5N4@2g~11g2!~11S2!F12g~11g2!F2

2g~11g2!S2F31~116g21g4!SF4#, ~A7!

with N51/A122Sg1g2 andg5(12A12S2)/S. Here, we
make use of the functions

F15cAb, ~A8!

F25cAbe2bd2
I0~bd2!, ~A9!

F35cAbed2~b21/b!I0@d2~b21/b!#, ~A10!

F45cAbe2d2/4b (
k52`

`

~21!kI2kS d2

4
~2b21/b! D

3I2kS i
d2

2
Ab221D , ~A11!

where In denotes the Bessel function of thenth order. For
our purposes, we can neglect terms withuku.1 in the sum in
F4 , since for\v053 meV, B,30 T, andd50.7 the rela-
tive error introduced by doing so is less than 1%.



R

te

.

d L

, D

L.

n,

v,
et

.

,

ev

.

J

e

in
sil
a

e
er

A.

d in
uld
out
n-

r-
er,

ev.

s-

nge
nce
imi-
s

on

K.

,

o
en-
and
ndi-

en
ry.

lem
the

out
or-

tly

2078 PRB 59GUIDO BURKARD, DANIEL LOSS, AND DAVID P. DiVINCENZO
*Electronic address: burkard@ubaclu.unibas.ch
†Electronic address: loss@ubaclu.unibas.ch
‡Electronic address: divince@watson.ibm.com
1L. Jacak, P. Hawrylak, and A. Wo´js, Quantum Dots~Springer,

Berlin, 1997!.
2L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha,

M. Westervelt, and N. S. Wingreen, inMesoscopic Electron
Transport, Proceedings of the Advanced Study Institute, edi
by L. L. Sohn, L. P. Kouwenhoven, and G. Scho¨n ~Kluwer,
Dordrecht, 1997!.

3R. C. Ashoori, Nature~London! 379, 413 ~1996!.
4R. J. Luyken, A. Lorke, M. Haslinger, B. T. Miller, M. Fricke, J

P. Kotthaus, G. Medeiros-Ribiero, and P. M. Petroff~unpub-
lished!.

5S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, an
P. Kouwenhoven, Phys. Rev. Lett.77, 3613~1996!; L. P. Kou-
wenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto
G. Austing, T. Honda, and S. Tarucha, Science278, 1788
~1997!.

6F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K.
Campman, and A. C. Gossard, Phys. Rev. Lett.75, 705 ~1995!;
C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campma
and A. C. Gossard, Science274, 1332~1996!.

7T. H. Oosterkamp, S. F. Godijn, M. J. Uilenreef, Y. V. Nazaro
N. C. van der Vaart, and L. P. Kouwenhoven, Phys. Rev. L
80, 4951~1998!.

8R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing, and K
Eberl, Phys. Rev. Lett.80, 4032~1998!; R. H. Blick, D. W. van
der Weide, R. J. Haug, and K. Eberl,ibid. 81, 689 ~1998!.

9K. Nomoto, R. Ugajin, T. Suzuki, and I. Hase, J. Appl. Phys.79,
291 ~1996!; A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent
and G. L. Snider, Science277, 928 ~1997!.

10D. Deutsch, Proc. R. Soc. London, Ser. A400, 97 ~1985!.
11D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 ~1998!.
12I. L. Chuang, N. A. Gershenfeld, and M. Kubinec, Phys. R

Lett. 80, 3408~1998!.
13D. Cory, A. Fahmy, and T. Havel, Proc. Natl. Acad. Sci. USA94,

1634 ~1997!.
14J. A. Jones, M. Mosca, and R. H. Hansen, Nature~London! 393,

344 ~1998!.
15J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091 ~1995!; C.

Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J
Wineland,ibid. 75, 4714~1995!.

16Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H.
Kimble, Phys. Rev. Lett.75, 4710~1995!.

17D. V. Averin, Solid State Commun.105, 659 ~1998!; A. Shnir-
man, G. Scho¨n, and Z. Hermon, Phys. Rev. Lett.79, 2371
~1997!.

18A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. L
74, 4083~1995!.

19R. Landauer, Science272, 1914~1996!.
20J. A. Brum and P. Hawrylak, Superlattices Microstruct.22, 431

~1997!.
21P. Zanardi and F. Rossi, quant-ph/9804016~unpublished!.
22Such leakage can happen, e.g., in the switching process of s

qubits or by coupling two qubits together, etc., and can ea
lead to uncontrollable errors. This concern is especially relev
in quantum dots where the energy-level spacing is~nearly! uni-
form ~in contrast to real atoms! so that the levels defining th
qubit are of similar scale as the separation to neighboring en
levels.
.

d

.

.

t.

.

.

tt.

gle
y
nt

gy

23J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett.80, 4313
~1998!.

24A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and
C. Gossard, Phys. Rev. Lett.81, 200 ~1998!.

25The dephasing times of Refs. 23 and 24 are both measure
GaAs semiconductors, which involve many electrons. It wo
be highly desirable to get direct experimental information ab
dephasing times in isolated quantum dots of low filling as co
sidered here.

26D. P. DiVincenzo, Phys. Rev. A51, 1015~1995!.
27A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Ma

golus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurt
Phys. Rev. A52, 3457~1995!.

28B. E. Kane, Nature~London! 393, 133 ~1998!.
29D. C. Mattis, in The Theory of Magnetism, Springer Series in

Solid-State Sciences No. 17~Springer, New York, 1988!, Vol. I,
Sec. 4.5.

30D. P. DiVincenzo and D. Loss, Superlattices Microstruct.23, 419
~1998!.

31V. Fock, Z. Phys.47, 446 ~1928!; C. Darwin, Proc. Cambridge
Philos. Soc.27, 86 ~1930!.

32M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B45, 1951
~1992!.

33D. Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. R
B 47, 2244~1993!.

34G. Burkard, D. Loss, and D. P. DiVincenzo~unpublished!.
35See, e.g., E. Fradkin,Field Theories of Condensed Matter Sy

tems~Addison-Wesley, Reading, MA, 1991!.
36We note that the significant changes due to Coulomb long-ra

interactions are valid down to the scale of real atoms. Si
atomic orbitals and the harmonic orbitals used here behave s
larly ~for B50!, we expect to find qualitatively similar result
for real molecules~as found here for coupled dots! especially
regarding the effect of Coulomb long-range interactions
tH ,UH ,J and their dependence on the interatomic distancea.

37J. Preskill, quant-ph/9712048~unpublished!.
38M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and

Ploog, Phys. Rev. Lett.61, 1650~1988!.
39D. C. Dixon, K. R. Wald, P. L. McEuen, and M. R. Melloch

Phys. Rev. B56, 4743~1997!.
40W. Zhang and D. G. Cory, Phys. Rev. Lett.80, 1324~1998!.
41If during the change ofv(t) the total spin remains conserved, n

transitions between the instantaneous singlet and triplet eig
states can be induced during the switching. Thus, the singlet
triplet states evolve independently of each other, and the co
tion on adiabatic switching involvesDe ~instead ofJ!, i.e., we
only need to require that 1/ts'uv̇/vu!De/\, which would be
less restrictive. Also, only*0

tsdtJ(t) and notJ(t) itself is needed
for the gate operation. Therefore, the adiabaticity criterion giv
in the text, while being sufficient, need not be really necessa
However, the complete analysis of the time-dependent prob
in terms of variational wave functions is beyond the scope of
present paper and will be addressed elsewhere.

42We note that it is sufficient to have single-qubit rotations ab
any two orthogonal axes. A preferable choice here are two
thogonal in-plane axes because magnetic fieldsBi parallel to the
2DEG do not affect the exchange couplingJ(B') ~assuming
that we can exclude subband mixing induced by a sufficien
strongBi!.


